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Abstract

Powder diffraction offers a wide spectrum of applica-
tions to solid-state scientists. The method traditionally
used for phase analysis and the study of structural
imperfections has bene®ted, in the last twenty years,
from great advances in the instrumentation and
computer-based approaches for pattern indexing and
modelling. The factors at the origin of the metamor-
phosis of the method are presented. The major modern
applications reported include quantitative analysis and
the extraction of three-dimensional structural and
microstructural properties. The use of pattern-®tting
techniques for the characterization of the microstructure
is discussed through applications to nanocrystalline
materials. Remarkable results achieved in the solution
of crystal structures are presented, as well as the impact
in solid-state chemistry of powder crystallography,
particularly for elucidating the crystal chemistry of
families of compounds for which only powders are
available. New strategies for solving the phase problem
have been introduced and new classes of solids are
being studied, such as drugs, coordination and organic
compounds.

1. Introduction

Diffraction by polycrystalline solids is one of the most
important analytical techniques available to materials
scientists. Traditionally, the powder diffraction method
has been used for phase identi®cation and quantitative

analysis, the measurement of precise unit-cell constants
and the study of structure imperfections from line-
broadening analysis. Diffraction theory by imperfect
solids (crystallite size, lattice distortion, stacking faults)
was well established half a century after the introduction
of the powder method (see, for instance, Guinier, 1963)
and many applications were reported in various ®elds of
materials science, such as metallurgy, graphitic carbons
and clay mineralogy. However, the full trace of a powder
diffraction pattern contains a good deal of information,
not only on the microstructure of a solid but also on its
crystal structure. Although only one-dimensional data
are available, there was a continuous effort to extract
this important three-dimensional property for moder-
ately complex structures. This became truly realistic
from the late 1960s, following the advent of the Rietveld
method (Rietveld, 1969) for the re®nement of crystal
structures from powder data. The dramatic transfor-
mation of the powder method was the consequence of
several important developments in the methodology,
often made possible by the power and availability of
computers, and in the instrumentation using conven-
tional X-rays, synchrotron X-rays or neutron radiation.
All modern powder diffraction applications have bene-
®ted from these great advances, e.g. phase analysis, the
investigation of structural imperfections and structural
analysis. The powder method has been widely used since
its introduction; however, its importance has been
highlighted in recent times by its roÃ le in the character-
ization of high-Tc superconductors, fullerenes, zeolites,
nanocrystalline solids and by the remarkable develop-
ment of structure determination for compounds that can
be obtained only in polycrystalline form. The method is
nowadays used in various ®elds of materials science and
chemistry, including the more recent applications to
pharmaceutical compounds. Moreover, applications are
not restricted to the analysis of solely one diffraction
pattern registered at room temperature; they also
extend to data collected under nonambient conditions
(pressure, temperature, atmosphere) or in a dynamic
mode, an area that continues to expand as more intense
X-ray synchrotron and neutron sources became avail-
able and new detector technology is developed. The
present article is not intended to review the details of
the developments and all applications of modern
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powder diffraction; interested readers should refer to
the recent extended review Powder Diffraction by
Langford & LoueÈr (1996). The aim is to emphasize the
factors at the origin of the renewal of the method and to
describe the great activity in particular areas. This
overview of modern powder diffraction is illustrated
with examples, often studied simply with laboratory
X-ray sources, selected to re¯ect the state of the art of
the various facets of powder crystallography and its
impact in materials and chemical sciences.

2. The line overlap problem: consequences and remedies

2.1. Origin of diffraction-line overlap

With respect to the spatially located single-crystal
diffraction data, the principal limitation of powder data
is the fact that the three-dimensional array of reciprocal
nodes is rotationally projected onto one dimension, as a
consequence of the random orientation of the crystal-
lites constituting the sample. If crystallites are small and/
or not perfect, the region of appreciable scattering is not
concentrated at points of the reciprocal lattice but
extends around the reciprocal nodes. In the powder
diffraction pattern, only radial reciprocal distances d�

(� 2 sin �=�) and the distribution of the intensity within
diffraction lines are directly observed from the origin of
the reciprocal space. The loss of information and its
consequences that result from the collapse of the three-
dimensional reciprocal space of the individual crystal-
lites can be summarized as follows:

(i) The overlap of the diffraction lines can be acci-
dental or exact. An exact superposition occurs when
reciprocal nodes with different indices are located at the
same distance from the origin of the reciprocal lattice.
The observed diffraction line pro®le is then the
summation of the projected intensity distribution asso-
ciated with each node. There are two immediate
consequences for analyses of structure and micro-
structure. Certain nonequivalent re¯ections exactly
overlap, particularly for high crystal symmetry. It is then
unclear how much each set of planes contributes to the
observed lines. This re¯ection overlap, or information
scrambling, is a serious obstacle which limits the size and
complexity of structure that can con®dently be investi-
gated. In microstructural studies, only an average pro®le
is observed for exactly overlapping lines. Therefore, only
average crystallite shape, crystallite size and micro-
distortion can generally be extracted.

(ii) The degree of line overlap becomes increasingly
severe as d� increases, as shown by the total number of
projected reciprocal-lattice nodes, which rises with d�3.
The density of lines is however lower at low Bragg
angles, which is favourable for indexing powder
diffraction patterns.

(iii) Diffraction line broadening contributes to the
loss in resolution. It arises from the convolution between

the instrumental g(x) pro®le, including spectral disper-
sion, and the intrinsic f(x) pro®le due to structural
imperfections (crystallite size, strain, mistakes etc.).

(iv) An additional problem often arises from a
preferred orientation of crystallites, particularly if they
are markedly anisotropic. Although mathematical
methods have been proposed to circumvent this
problem (see, for example, Valvoda, 1992), it is recom-
mended to reduce the effect prior to collecting powder
data by an optimal specimen preparation (see, for
instance, Jenkins & Snyder, 1996).

2.2. Restoration of diffraction information

Efforts to alleviate and overcome line overlap have
been considerable from the late 1960s onwards. Modern
powder crystallography has bene®ted from (i) an
improved instrumental resolution, (ii) the introduction
of pattern indexing methods for the geometrical recon-
struction of the three-dimensional reciprocal lattice
from one-dimensional data and (iii) the advent of ®tting
techniques to model the observed diffraction pattern.
All these features have contributed to extending the
limits of traditional applications, e.g. identi®cation
procedures, line-broadening analysis and quantitative
analysis, and have been responsible for the emergence of
new advanced applications, such as ab initio structure
determination from powder diffraction data.

2.2.1. Modelling of powder diffraction data. Pattern
modelling techniques constitute basic tools of modern
powder diffraction. Two different approaches are
currently applied, the pattern decomposition method,
for which no structural information is required, and the
Rietveld method, which includes the re®nement of
structure parameters. The procedure consists of ®tting,
usually with a least-squares re®nement, a calculated
model to the whole observed diffraction pattern. The
calculated intensity y(xi) at point xi is expressed as a
function of the integrated intensity Ik of the re¯ections
contained in the pattern and a normalized analytical
function � is used to model the individual line pro®les.
It is given by

ycal�xi� �
P

k

Ik��xi ÿ xk� � b�xi�; �1�

where b(xi) is the intensity of the background and the
sum is over all re¯ections contributing to the intensity at
xi. The method of least squares is then used to estimate
the values of the adjustable parameters in the model.
The most commonly used line-shape functions � are
derived from the Gaussian (G) and the Lorentzian (L).
The pseudo-Voigt function is the sum of G and L
components, in which � is the mixing factor (� � 1 for L
and 0 for G). The Pearson VII function is (L)m, where
the exponent m is the line-shape parameter (m � 1 for
L and m � 1 for G). The Voigt function is a convolu-
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tion of L and G components whose limits of application
are de®ned by the value of the shape parameter ',
de®ned as the ratio of the full width at half the peak
intensity (FWHM) to the integral breadth (�), i.e. 0.6366
for L and 0.9394 for G. In practice, errors often arise
from an unavoidable truncation of line tails, particularly
for line pro®les with Lorentzian trends (Toraya, 1985).

(a) Pattern-decomposition method. The purpose of
pattern-decomposition techniques is to extract the
pro®le parameters for individual Bragg components
without reference to a structural model. They were
introduced a few years after the advent of the Rietveld
method (Taupin, 1973; Sonneveld & Visser, 1975). Line-
pro®le parameters of interest extracted from the powder
pattern are: peak position (2�), full width at half-
maximum intensity (FWHM), integral breadth (�),
integral intensity (I), shape factor (�, m or ') and some
measure of line asymmetry. The method has greatly
improved data reduction. Parameters are precisely
determined and subtle differences detected in line
shapes, especially line tails, are invaluable in deter-
mining microstructural properties.

In a related approach, aimed to extract the integrated
intensity of hkl re¯ections for the entire pattern, peak
positions are constrained by adjustable unit-cell par-
ameters. If the space group is known, only intensities
of allowed re¯ections are obtained. This approach
produces a set of intensities up to an angular limit for all
expected lines whatever the degree of line overlap. For
exactly overlapping lines, an equipartition principle of
the overall intensity is generally applied. After conver-
sion to the structure-factor amplitude |Fobs|, the set is
used as input data for structure solution. Among the
approaches most often employed are the Pawley tech-
nique (Pawley, 1981), based on a least-squares ®tting of
the pattern, and the Le Bail algorithm, derived from the
procedure used by Rietveld [1969, equation (7)] for the
partition of calculated intensities in the last stage of the
re®nement (Le Bail et al., 1988). The Le Bail algorithm
has been applied in a number of pattern-decomposition
programs (see, for instance, Altomare, Burla et al., 1995;
Rius et al., 1996). The last method is recognized as being
very robust and stable, while the elimination of some
instabilities in the Pawley approach needs some addi-
tional treatment (Jansen et al., 1992; Sivia & David,
1994). For instance, an optimal estimate of the structure-
factor amplitudes using a Bayesian procedure that
circumvents the problems associated with negative
intensities and minimizes the effects of Bragg re¯ection
overlap has been described by Sivia & David (1994).
Moreover, anisotropic thermal-expansion properties
have also been exploited for the separation of over-
lapping Bragg re¯ections from powder data collected
at different temperatures (Shankland, David & Sivia,
1997). It is important to stress here the crucial roÃ le of the
extraction and precision of the structure-factor magni-
tude in structure solution. However, owing to the

overlap of nonequivalent re¯ections, the set of extracted
|Fobs| is always somewhat biased. To evaluate the amount
of reliable intensity information extracted from a
powder diffraction pattern, Altomare, Cascarano et al.
(1995) have proposed an algorithm, based on a
systematic study of line overlap (re¯ection proximity
and individual FWHMs), to estimate the number of
statistically independent re¯ections as a function of the
limit of the selected angular range.

(b) The Rietveld method. Unlike the pattern-decom-
position approach, in the Rietveld method the integral
intensities Ik of the re¯ections are calculated from the
atomic parameters in the model. Then equation (1)
becomes

ycal�xi� � S
P

k

mk�Lp�kjF2
kjPk��xi ÿ xk� � b�xi�; �2�

where S is the scale factor, mk the multiplicity of
re¯ection k, (Lp)k the Lorentz±polarization factor and
Pk is the preferred-orientation correction function. To
generate the full powder diffraction pattern, pro®le
parameters to describe the width and shape of the
diffracted re¯ections are also adjusted until a best ®t of
the calculated pattern to the observed pattern is
obtained. For detailed information, the reader is
referred to the book The Rietveld Method (Young,
1995).

A great deal of work has been devoted to modelling
anisotropic line broadening arising from structural
imperfections (crystallite size and distribution, micro-
strain, stacking faults). There are basic dif®culties in
modelling all kinds of anisotropic line broadening
arising from such stuctural defects (Delhez et al., 1995).
Readers interested in the recommended approaches for
treating anisotropic broadening are referred to the
review by Le Bail (1992). However, even though the
Rietveld method is widely used, the results of two
Rietveld re®nement `round robins' organized by the
Commission on Powder Diffraction (CPD) of the
International Union of Crystallography clearly revealed
a number of problems and led to recommendations for
avoiding errors in atomic coordinates and their related
standard deviations (Hill, 1992; Hill & Cranswick, 1994).
As a consequence, the CPD has recently formulated a
set of Rietveld re®nement guidelines to help newcomers
in the ®eld (McCusker et al., 1998).

2.2.2. Geometric reconstruction of the reciprocal
lattice. Advances in powder-pattern indexing have
greatly contributed to the development of modern
powder diffraction. Indeed, pattern indexing is a
prerequisite for most applications. The purpose of
pattern indexing is the geometrical reconstruction of the
three-dimensional reciprocal lattice from the radial
distribution of d spacings. Considerable effort has been
devoted over more than half a century to the solution of
this basic problem of powder crystallography. The ®rst
important approach to the problem was reported by
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Runge (1917), immediately after the introduction of the
powder method. Major contributions in the ®eld are due
to de Wolff who emphasized the importance of data
accuracy, clearly expressed in his quotation `it (indexing)
would be quite an easy puzzle if errors of measurements
did not exist' (de Wolff, 1957). He also provided the
means to discriminate the correct indexing from several
possible mathematical solutions. To assess the reliability
of an indexed pattern, he introduced a ®gure of merit
(M20), based both on the quality of the ®t between
observed and calculated d spacings and on the size of the
unit cell (de Wolff, 1968). The idea was later used by
Smith & Snyder (1979) for rating the quality of powder
diffraction data, through a related parameter FN. The
higher the accuracy of data and the more complete the
pattern, the larger are M20 and FN. It is not possible to
de®ne an absolute value of M20 which guarantees
correctness. However, a solution with M20 greater than
20 is usually correct, though this may not be true if there
is a dominant zone in the pattern (see, for example,
LoueÈr, 1992). Different approaches to the indexing
problem have been suggested and applied in computer
programs. The Runge±Ito±de Wolff method is used in
the program written by Visser (1969). A trial-and-error
procedure, based on a permutation of Miller indices for
low-angle lines, is used in the program TREOR90
(Werner et al., 1985), while an exhaustive successive
dichotomy algorithm has been preferred in DICVOL91
(Boultif & LoueÈr, 1991). In an important paper, Shirley
(1978) revealed to powder diffractionists the power of
indexing methods. Their success rate is very high,
provided that the quality of data is good enough. (The
absolute error on peak position should be lower than
0.03�2�.) Powder-pattern indexing methods, particular
cases and data-collection requirements have been
reviewed by LoueÈr (1992). There is no particular
problem with large unit-cell volumes as long as enough
information is contained in the low-angle part
of the pattern, i.e. dominant zones that occur when a
crystal axis is signi®cantly shorter than the two others
are not present. Representative examples with
large unit-cell volume, obtained with X-ray laboratory
data, are monoclinic halotrycite [V � 3152 AÊ 3,
M20 � 15, F20 � 35�0:006; 98� (Werner, 1980)] and
barium titanyl oxalate hydrate [V � 2595 AÊ 3, M20 � 46,
F20 � 107�0:0056; 50� (LoueÈr et al., 1990)]. Such results
are encouraging for the study of certain categories of
materials with large unit-cell volumes, such as molecular
compounds and zeolites. The limits of applications and
accuracy are extended with ultra-high-resolution X-ray
synchrotron data, particularly for triclinic materials, e.g.
the ®gures of merit for Zr(OH)2(NO3)2 � 4.7H2O
were M20 � 54 and F20 � 112�0:0059; 30� for data
collected with conventional monochromatic Cu K�1

X-rays, while for data collected with the 2.3 HRPD at
Daresbury SRS Laboratory they were M20 � 295 and
F20 � 635�0:0012; 26� (Cernik & LoueÈr, 1993).

2.2.3. High instrumental resolution. The instrument
and radiation used to collect powder data contribute to
the line-overlap problem. The instrumental resolution is
generally expressed as the full width at half-maximum
FWHM (expressed in 2� units) of a diffraction line from
a standard material without intrinsic line broadening.
The improvement of the instrumental resolution has
been signi®cant in recent times. A major advance was
the advent of synchrotron X-rays with parallel-beam
optics and a crystal analyser (Cox et al., 1983), from
which an ultra-high resolution of �0.01�2� can be
achieved. Other advantages of synchrotron radiation are
high intensity and tunable wavelength. These features
have extended the limits of the complexity of structures
that can be investigated from powders and have
contributed to the emergence of resonant X-ray
diffraction used to enhance the contrast between
elements with similar atomic numbers (see, for example,
Att®eld, 1992). Nevertheless, most current applications,
including line-broadening analysis, indexing and struc-
ture analyses are carried out from data collected with
conventional X-ray sources. Parafocusing techniques are
used with ®lm focusing cameras and diffractometers
based on Bragg±Brentano or transmission geometries.
With an incident-beam monochromator, the component
K�2 can be totally removed, giving high-resolution
patterns with low background. With monochromatic
radiation, the instrumental resolution function (IRF),
FWHM versus 2�, for the Bragg±Brentano geometry
typically has a minimum of �0.06�2� at 40� and this
value is doubled at about 130�2� (LoueÈr & Langford,
1988). Detailed descriptions of instrument geometries
used in modern powder diffraction have been reported
by Parrish (1992) and Langford & LoueÈr (1996).
Moreover, the angular dependence of instrumental line
shapes (breadth and line-shape factors) can be deter-
mined precisely from pro®le-®tting techniques applied
to data from standard materials collected with the
Bragg±Brentano geometry (LoueÈr & Langford, 1988) or
with the high-resolution powder diffraction optics used
with synchrotron radiation (e.g. Cox, 1991; Langford et
al., 1991).

3. The analytical tool

Traditionally, X-ray powder diffraction has been a
popular method for phase identi®cation, often known as
search/match, and quantitative analysis. Considerable
improvements and new approaches have arisen from the
methodology recently developed and from the general
use of computer facilities. For instance, the identi®cation
of unknown materials or mixtures of phases has bene-
®ted from the revolution in storage media. The Powder
Diffraction File (PDF) database from the International
Centre for Diffraction Data (ICDD) contains data for
over 100 000 substances stored on a CD-ROM, which is
used in modern search/match programs. An important
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innovation in search/match procedures is the use of the
total diffraction pattern of the unknown substances,
rather than simply the list of d's and I's. The method uses
an interesting strategy for deciding whether or not the
sample contains a particular PDF entry. Data for the
latter are compared with regions of zero intensity in the
pattern of the unknown sample (Caussin et al., 1988).
Interested readers are referred to the review by Lang-
ford & LoueÈr (1996) and to the book by Jenkins &
Snyder (1996).

In quantitative analyses, integrated line intensity and
reference-intensity methods have been used for the
determination of phase abundance in powder mixtures
for many years (see, for example, Jenkins & Snyder,
1996). An extension of the Rietveld method is its use for
quantitative analysis. Hill & Howard (1987) demon-
strated that there is a very simple relationship between
the individual scale factors S determined in a Rietveld
re®nement and the phase abundance of a multi-
component mixture. The weight fraction W of phase p is
given by

Wp � Sp�ZMV�p
.P

i

Si�ZMV�i; �3�

where Z, M and V are the number of formula units per
unit cell, the mass of the formula unit and the unit-cell
volume, respectively, and the summation is over all
phases present. This approach based on the full
diffraction pro®le provides numerous advantages over
conventional quantitative analysis methods. In parti-
cular, it minimizes both the uncertainty in the derived
phase abundances and the effects of preferred orienta-
tion, even though the correction of preferred orientation
in the Rietveld method still needs some improvement
(Valvoda, 1992). A number of applications have been
reported. The procedure is of particular interest for the
determination of the relative abundance of the consti-
tuents in rock samples (Hill et al., 1993; Bish & Post,
1993). A representative example is the study of a stan-
dard granite, in which the results of the Rietveld
re®nement from X-ray and neutron diffraction data
were compared with a normative calculation (Hill et al.,
1993). Fig. 1 shows the plot output from the Rietveld
analysis of the four-phase mixture, as well as the good
agreement between the quantitative analysis and the
expected results.

4. Line-broadening analysis and microstructural
properties

4.1. Pro®le ®tting and line-broadening analysis

Microstructural imperfections (lattice distortion,
stacking faults) and the small size of crystallites (i.e.
domains over which diffraction is coherent) are usually
extracted from the integral breadth or a Fourier analysis
of individual diffraction-line pro®les, for which theories

are well established (see, for example, Guinier, 1963). In
contrast with this direct approach of line-broadening
interpretation, the calculation of line pro®les on the
basis of a physical model to be compared with the
observed data has emerged in recent years. The
modelling of diffraction effects due to a ®nite domain
size with simple shapes is reasonably straightforward
(see, for example, Langford & LoueÈr, 1982), though
crystallite-size distributions must be assumed to match
with the observed diffraction patterns. The modelling of
diffraction-line broadening due to distortion ®elds
associated with lattice defects as dislocations has been
investigated by Van Berkum et al. (1996). Nevertheless,
with the advent of ®tting techniques, analytical models
of individual components can be extracted from clusters
of re¯ections with reasonable accuracy, provided that
the degree of line overlap is not too high. Indeed, line-
broadening analysis is one of the most demanding
applications of the powder method, in particular, line-
pro®le tails must be perfectly modelled, which becomes
increasingly unlikely in cases of severe line overlap.
Propagation of errors in a Fourier approach can be
serious, particularly those due to truncation (Delhez et
al., 1986). Consequently, most precise modern applica-
tions have resulted in the use of pattern-decomposition
techniques for the study of high-symmetry compounds.
These techniques have however contributed to an
extension of line-broadening analysis to a greater
number of re¯ections and a more detailed (three-
dimensional) description of the microstructural proper-
ties has been reported in a few cases. These methods are
usually applied to materials in which diffracting domains
have sizes greater than a few nanometres (�50 AÊ ). Two
main approaches, combining pattern-decomposition and
line-broadening analysis, have been described. They are
based on:

(i) An interpretation of the integral breadth (Lang-
ford et al., 1986). The use of the Voigt function, intro-
duced in powder diffraction by Langford (1978) has
greatly improved the analysis, particularly for correcting
with accuracy the observed line breadths from the
instrument contribution. For strain- and mistake-free
materials, the corrected integral breadth ��, expressed in
reciprocal units, is related to an apparent size "�
(� ��ÿ1), equivalent to the volume average of the
thickness of the crystallites, measured in a direction of
the scattering vector. The method requires that the
observed (h), the instrumental (g) and the sample-
dependent ( f ) line pro®les are adequately represented
by a Voigtian. An admirable account of the use of the
method in extracting microstructural properties, as well
as various applications, has been reported by Langford
(1992).

(ii) A Fourier analysis, in which Fourier coef®cients
are interpreted in terms of microstructural properties
(Warren, 1969). According to the Warren±Averbach±
Bertaut procedure, the Fourier coef®cients C(n, l)
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[� A�n; l� � iB�n; l�, where n is the Fourier harmonic
number and l the order of re¯ection] of the intrinsic f(s)
pro®le in reciprocal space can be expressed as the
product of real order-independent size coef®cients
AS(n) and complex order-dependent, distortion coef®-
cients CD(n, l) [� AD�n; l� � iBD�n; l�]. Considering
only the cosine coef®cients A(n, l) [� AS�n�AD�n; l�]
and a series expansion of AD(n, l), valid for small values
of l and n, AS(n) and the microstrain he2(n)i can be

readily separated, if at least two orders of a re¯ection
are available, by means of the equation (Delhez &
Mittemeijer, 1976)

A�n; l� � AS�n� ÿ AS�n�2�2l2n2he2�n�i: �4�
The initial slope of the size coef®cients AS(n) versus n is
a measure of an apparent size "F , de®ned as an area-
weighted crystallite size (Bertaut, 1950). Another
important result is that the Fourier coef®cients C(n) are

Fig. 1. Rietveld re®nement plots
for a standard granite sample
obtained from X-ray diffrac-
tion data (Cu K�) and neutron
diffraction data (1.893 AÊ ). The
rows of vertical bars below the
plots show the positions of the
Bragg re¯ections for, from top
to bottom, quartz, plagioclase,
microcline and biotite. Phase
abundances derived from
X-rays and neutron data are
compared to normative calcu-
lations (wt %). Reprinted with
permission from Hill et al.
(1993). Copyright (1993)
Oxford University Press).
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related to the integral breadth in reciprocal units ��

[� �s
�P

n jC�n�j, where �s is the range of the line
pro®le]. There is no assumption regarding the shape of
the f(s) pro®le and the method can then be used to
obtain the integral breadth ��f , even in the case of
asymmetry and super-Lorentzian line shape, provided
that the deconvolution of observed pro®les is correctly
carried out. Several authors have combined ®tting
techniques with this procedure (e.g. Benedetti et al.,
1988; LoueÈr & Audebrand, 1998). A related approach of
Fourier analysis, assuming a Voigtian f pro®le, has also
been reported (Balzar, 1992).

4.2. Applications to nanocrystalline powders

The number of applications of line-broadening
analyses is considerable in various areas of materials
science, e.g. thin ®lms, metals and alloys, mineralogy,
loose powders, ceramics etc. A representative example
of the microstructural information contained in a
powder diffraction pattern and extracted through
pro®le-®tting techniques has been reported for several
samples of hexagonal ZnO. The samples were prepared
at low temperature from inorganic precursors with
low thermal stability, Zn3(OH)4(NO3)2 (LoueÈr et al.,
1983), ZnC2O4 � 2H2O (Langford et al., 1993),
Zn5(OH)6(CO3)2 and Zn(CH3COO)2 � 2H2O (Aude-
brand et al., 1998). Physical parameters governing the
synthesis were carefully monitored because they in¯u-
ence the microstructural properties. For ex-hydroxide-
nitrate ZnO, there was no evidence of mistakes and
crystallites had the form of a hexagonal prism with its
axis parallel to the c direction of the unit cell, for which a
cylinder is a reasonable approximation. In the case of a
cylinder, the relation between the apparent size "� and
the diameter D and height H depends on the angle 'z,
de®ning the direction of the diffraction vector with
respect to the cylinder axis, and � [� tanÿ1�D=H�], the
diagonal angle of the cylindrical shape. From Langford
& LoueÈr [1982, equations (10), (17) and (18)],

"� �
�D=�� csc 'z�8=3� 2q cosÿ1 qÿ �1=2q� sinÿ1 q

ÿ�5=2��1ÿ q2�1=2 � �1=3��1ÿ q2�3=2�
0 � 'z � �

D csc 'z�8=3�ÿ 1=4q� � � 'z � �=2,

8>><>>:
�5�

where q � H�tan 'z�=D. Langford (1992) showed that
these equations can be ®tted by the method of least
squares. Their general use in total-pattern-®tting algor-
ithms to calculate integral breadths for crystallites with
shapes varying from an acicular to a disk-like shape has
also been discussed by Toraya (1995). A section through
the cylinder obtained for ex-hydroxide-nitrate ZnO is
displayed in Fig. 2(a). From the remarkable agree-
ment between the experimental values of the actual

thickness and the cylinder section [hDi � 180 �10� AÊ ,
hHi � 270 �60� AÊ ], it is seen that this form clearly
models satisfactorily the average shape of a crystallite
(Langford et al., 1993). From these results, a three-
dimensional description of the diffracting domains has
been obtained. It is then of interest to compare this
result with a TEM analysis of the sample, as shown in
Fig. 2(b). In the last case, only a two-dimensional view of
the `particles' has been obtained, showing, however, a
good agreement between their average diameter and the
mean diameter derived from X-ray diffraction-line-
broadening analysis.

Similar crystallite shape and size analyses were
repeated for ZnO samples obtained from the three other
precursors. Additional important microstructural
features about microstrains and stacking faults were also
observed. The method was then used to study, on a
nanometric scale, the early stages of crystallite growth
from ZnO samples prepared in situ with a constant
heating rate, from which interesting conclusions
concerning growth mechanisms and precursor-depen-
dent properties were established (Audebrand et al.,
1998). From a diffraction-line-broadening analysis of the
successive patterns of ZnO, different crystallite growth
reÂgimes were identi®ed with precursor-dependent linear
relationships ln D (and H) versus Tÿ1. In order to
determine the activation energy and the dimensionality
of the crystallite-growth mechanisms, time-dependent
X-ray diffraction studies were performed at selected
temperatures, with an acquisition time of 600 s per
pattern. Such results are invaluable in the study of the
thermal behaviour of nanoscale powders, such as crys-
tallite growth, annealing and crystallization phenomena.
For this kind of application, conventional X-ray sources
clearly have serious limitations. The use of high intensity
available with synchrotron sources decreases consider-
ably the time scale for collecting powder data.

5. Ab initio structure determination

5.1. Methodology for structure solution from powder
data

With the advent of the powerful methods to recover
the lattice constants of the three-dimensional reciprocal
lattice, to extract integrated intensities and to re®ne
crystal structure from powder data, the door has been
opened to solve crystal structures. As a consequence, the
®eld of structure solution has been an extremely active
research area in recent years, including the development
of software adapted to powder data. The procedure for
solving structures from powder data is now well estab-
lished and complex structures solved in this way are
reported regularly. Although the dif®culties in solving
structures can have different origins, e.g. high-symmetry
space-group ambiguity combined with a complex
chemical formula and limited resolution data [e.g.
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C16H22N6, space group P3 (Ochando et al., 1997)] and
the size of the unit-cell volume {(e.g. 7471 AÊ 3 for
[(CH3)4N]4Ge4S10 (Pivan et al., 1994)}, the number of
atoms in the asymmetric unit is frequently used as a
complexity indicator. Representative examples include
structures with 29 atoms in the asymmetric unit, such as
gallium phosphite Ga2(HPO3)3 � 4H2O, space group P21

(Morris et al., 1992), barium aluminium ¯uoride
�-Ba3AlF9, space group Pnc2 (Le Bail, 1993), bismuth
tri¯uoromethanesulfonate Bi(H2O)4(OSO2CF3)3, space
group P21=c (LoueÈr et al., 1997), and also the structures
of uranyl phosphonate (UO2)3(HO3PC6H5)2 � H2O,
space group P212121, with 50 non-H atoms in the
asymmetric unit (Poojary et al., 1996) and La3Ti5Al15O37,
space group Cc, with 60 atoms in the asymmetric unit
(Morris et al., 1994). The most general strategy in
structure analysis from high-quality powder diffraction
data involves the following stages: (i) the determination
of unit-cell constants from indexing methods and deri-
vation of space groups; (ii) the extraction of the inte-
grated intensities, which are converted to structure-
factor magnitudes for use in (iii) methods of solving the
phase problem; (iv) the re®nement of the approximate
structure model with the Rietveld method. An alter-
native strategy, useful for instance in the study of
organic compounds, is to generate structure models with
direct-space methods independently of the powder
diffraction data, which are then selected from a direct

comparison with the observed powder pattern. This
approach avoids the critical step of extracting individual
intensities by means of total-pattern-decomposition
methods.

In earlier studies, only structure-factor magnitudes
of unambiguously indexed re¯ections were used
for structure solution with Patterson or direct
methods. Representative examples include struc-
tures solved from conventional X-ray data, e.g.
(NH4)4[(MoO2)4O3](C4H3O5)2 � H2O (120 |Fobs|) (Berg
& Werner, 1977), Zr(HPO4)2 � H2O (50 |Fobs|) (Rudolf
& Clear®eld, 1985), KCaPO4 � H2O (92 |Fobs|) (LoueÈr et
al., 1988) and from synchrotron X-ray data, e.g. �-CrPO4

(68 |Fobs|) (Att®eld et al., 1986). The introduction of
total-pattern-decomposition techniques (Pawley and Le
Bail methods) to extract integrated intensities auto-
matically has transformed this procedure and all
re¯ections up to an angular limit are used as input to a
method for structure solution.

Although the traditional methods of solving the phase
problem used with single-crystal data, i.e. the Patterson
and direct methods, are generally applicable with
powder data, considerable effort has been devoted to
adapting these approaches to the powder case and to the
introduction of a new methodology. Most of these
developments in the solution of unknown crystal struc-
tures have been discussed in detail in recent reviews
(McCusker, 1991; Cox, 1992; Cheetham, 1995; Langford

Fig. 2. (a) Representation of the
`average' (three-dimensional)
cylinder used to model the
shape of the crystallites of ex-
hydroxide-nitrate ZnO. The
lengths of the shorter arrows
(full lines) are the observed
apparent sizes ("obs) in the
direction of the diffracting
vectors; the actual observed
sizes (�obs) are represented by
the lengths of the higher
arrows (dotted lines); the
dotted curve is the loci of the
calculated apparent sizes
(from Langford et al., 1993).
(b) Transmission electron
micrograph of ex-hydroxide-
nitrate ZnO crystallites (bar is
200 AÊ ).
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& LoueÈr, 1996; Giacovazzo, 1996; Harris & Tremayne,
1996; Gilmore, 1996; Poojary & Clear®eld, 1997;
Masciocchi & Sironi, 1997). The state of the art for some
of these methods has been discussed more substantially,
e.g. the entropy-maximization and likelihood-ranking
method (Harris & Tremayne, 1996; Gilmore, 1996),
direct methods (Giacovazzo, 1996), Monte Carlo
methods (Harris & Tremayne, 1996) and simulated-
annealing approaches (Newsam et al., 1992). Methods
adapted to low-resolution data have also been reported
to assist structure determination, e.g. Patterson search
algorithms using large known molecular fragments
(Rius & Miravitlles, 1988) and multisolution direct
methods (Rius et al., 1995). Other direct-space methods
have been applied in recent times, especially for hand-
ling powder data of organic materials. These are based
on ®tting a powder diffraction pattern generated from a
trial structure model to the observed pattern. These new
procedures include the application of a genetic algor-
ithm (Shankland, David & Csoka, 1997; Harris et al.,
1998), the atom±atom potential method (LoueÈr et al.,
1995), whose principles for crystal structure prediction
by packing optimization have been reviewed by
Dzyabchenko et al. (1996), and a method developed for
the study of zeolite structures based on the generation of
a large number of electron-density maps using random
starting phases and structure-factor magnitudes derived
from the extracted intensities. These are then subjected
to a Fourier recycling procedure with a specialized
topology search (McCusker et al., 1996).

5.2. The impact in solid-state chemistry

The rapid growth of ab initio structure determinations
reported in various ®elds of solid-state chemistry is
evidence of the importance of this development in the
powder diffraction method. Some hundreds of struc-
tures have already been solved from powder data. These
have been concerned with inorganic, organometallic,
organic and coordination compounds. Several classes of
compounds, for which the growth of single crystals is
dif®cult or impossible, have greatly bene®ted from this
progress in powder crystallography. Representative
examples are fullerene derivatives (e.g. David et al.,
1991; Dinnebier et al., 1995) and synthetic zeolite
molecular sieves, e.g. (AlPO4)3 � (CH3)4NOH (Rudolf et
al., 1986) and (Si64O128) � 4C10H17N (McCusker, 1988).
Structures of related microporous materials have also
been reported. For instance, the structure of the
noncentrosymmetric cubic compound [(CH3)4N]4Ge4S10

[a � 19:5490 �4� AÊ , space group P4Å3n] was solved from
data collected with a conventional X-ray source (Pivan
et al., 1994). A partial model was derived by means of
direct methods from a total of 436 structure factors. The
structure model was completed from a difference-
Fourier map generated from 958 structure-factor
amplitudes. This structure model with 15 atoms in the

asymmetric unit and 37 variables was re®ned by the
Rietveld method (RF � 6%, Rwp � 12%). The structure
consists of isolated thioanions Ge4S4ÿ

10 , formed from the
condensation of four GeS4 tetrahedra sharing apices,
with tetrahedral (CH3)4N� cations as positive counter-
parts. Owing to the high volume of the unit cell
(7471 AÊ 3), the packing of the structure is not easy to
describe. However, the description can be simpli®ed by
considering the quasiperfect f.c.c. arrangement of the
apical S atoms of the Ge4S4ÿ

10 thioanion. In this
description, all octahedral voids are ®lled by the
(CH3)4N� ions, while only one-eighth of the tetrahedral
voids are occupied by the adamantine-like Ge4S6

moieties (Fig. 3).
To illustrate the great impact of structure determi-

nation from powder data in solid-state chemistry and
structural chemistry of families of compounds, which
were ignored until recent years because only powder
samples were available, two local examples will be
described brie¯y. All these studies were based on data
collected with a conventional monochromatic X-ray
source. They show that, similar to the contribution of
structure determination from single-crystal diffraction
data from the 1950s onwards in the progress of modern
chemistry, powder crystallography now plays a signi®-
cant roÃ le in the structural characterization of powder
materials. For instance, the chemistry of uranium phos-
phates has been transformed due to the ab initio struc-
ture determination of three major polycrystalline
phases: U(UO2)(PO4)2, a mixed-valence compound,

Fig. 3. Crystal structure of [(CH3)4N]4Ge4S10 with a high cubic cell
volume (7471 AÊ 3) solved ab initio from powder diffraction data:
perspective view of one subcell (a0 � a=2) showing the quasiperfect
f.c.c. arrangement of the apical S atoms (in black) of the Ge4S4ÿ

10

thioanions, the tetrahedral (CH3)4N� cations are located approxi-
mately in the octahedral sites and the Ge4S6 unit in one tetrahedral
site (from Pivan et al., 1994).

930 ADVANCES IN POWDER DIFFRACTION ANALYSIS



U2O(PO4)2 and UXPO4 � 2H2O (X � Cl, Br) (BeÂnard-
RocherulleÂ, LoueÈr et al., 1997, and references therein).

(a) Low-dimensional zirconium hydroxide nitrates.
Zirconium is known to form a large number of hydroxy
salts. This is observed, for instance, for nitrate-based
phases, for which a number of compounds have been
identi®ed from their powder diffraction pattern and
further characterized from the indexing of their powder
diffraction pattern. Zirconium hydroxide nitrates are
polycrystalline and the crystal structure of four varieties
has been solved from powder data (BeÂnard-RocherulleÂ,
Rius & LoueÈr, 1997, and references therein). These
powder diffraction studies have shed light on the crystal
chemistry of this family of compounds. All structures are
built from edge-sharing ZrO8 trigonal dodecahedra.
In [Zr(OH)2(NO3)2] � 4.7H2O, they form in®nite
isolated chains considered as linear macrocations
[Zr(OH)2(NO3)(H2O)2]n�

n , which are balanced by an
equivalent amount of nitrate anions. Water molecules
are located between the chains. Neutral zigzag
chains [Zr(OH)2(NO3)2(H2O)]n are observed in the
two structures of [Zr(OH)2(NO3)2] � 1.65H2O and
�-[Zr(OH)2(NO3)2] � H2O, while `free' water molecules
are located between them. Unlike these three one-
dimensional structures, the structure of Zr(OH)3NO3 is
surprisingly two-dimensional. It consists of neutral
layers formed from the condensation of chains already
observed in the other basic salts. These results re¯ect the
complexity of the crystal chemistry of this family of
zirconium phases. It is a neat illustration of the use of
recent advances in structure determination from powder
data to elucidate the crystal chemistry of series of
compounds.

(b) Piracetam, a drug polymorph with a 2 h lifetime.
Drug substances offer new challenges to the powder
diffraction technique. In general, they are essentially
based on organic components and their patterns exhibit
the familiar rapid fall-off in intensity with increasing
Bragg angle. With Cu K� radiation, the intensity of the
re¯ections usually vanishes around 60�2�. To improve
counting statistics, particularly at high angles, an opti-
mized procedure using a systematic variable-counting-
time strategy that is inversely proportional to the
decrease in line-pro®le intensity (Madsen & Hill, 1994)
was applied in the structure determination with direct
methods of the drug chlorothiazide from synchrotron
X-ray diffraction data (Shankland, David & Sivia, 1997).
For the structure solution of a metastable polymorph of
piracetam, counting statistics at high angles were
enhanced by using a position-sensitive detector
(CPS120, INEL) incorporated in a Debye±Scherrer set-
up, operating with monochromatic Cu K�1 radiation
(LoueÈr et al., 1995). Piracetam [(2-oxo-1-pyrrolidinyl)-
acetamide], C6H10N2O2, is a drug used in human
therapeutics, for which three polymorphs have been
identi®ed. The structure of two of them was solved from
single-crystal data. The third polymorph, metastable at

room temperature, is obtained as a result of phase
transformation upon heating at 408 K one of the stable
phases. At room temperature, this phase transforms
within 2 h into one of the stable phases (CeÂolin et al.,
1996). Unit-cell determination (V � 723 AÊ 3, monoclinic,
space group P21=n) was carried out with DICVOL91.
An attempt to solve the structure by direct methods was
unsuccessful. Therefore, a computational study of the
piracetam polymorphs based on minimization of the
crystal-lattice potential energy, calculated with semi-
empirical atom±atom potentials, was used for structure
solution. In this method introduced by Kitaigorodsky
(1973), structure models are postulated independently
of the powder diffraction data. The method assumes that
the molecule conformation is known and it involves the
search for the most favourable crystal packing
constrained by the known unit-cell dimensions and
space groups. The same molecular conformation as
observed in the structure of the two stable phases of
piracetam was expected to occur in the metastable
phase. As a result of packing calculations, two distinct
minima of crystal-lattice potential energy with
Er � ÿ100:78 and ÿ87.29 kJ molÿ1 were obtained. The
acceptance of only one of the models was based on the
agreement between calculated and observed patterns.
The atomic coordinates of the ten non-H atoms were
re®ned with the Rietveld method. The ten H-atom
positions were calculated and introduced in the last
calculation, but not re®ned. The ®nal R factors were
RB � 0:04 and Rwp � 0:04.

6. Concluding remarks

The above discussion and illustrations have demon-
strated that the last two decades have been a very
exciting time in the ®eld of powder diffraction. The key
to the successes remains the quality of the experiments.
Ultra-high-resolution instruments and high-intensity
sources of radiation available with synchrotron X-ray
sources offer powerful facilities, which contribute to
extend considerably the complexity of the problems that
can be solved from powder diffraction. Although the
precision of X-ray Rietveld re®nements are often
modest, in particular for materials with light atoms, the
use of combined X-ray and neutron diffraction data
contributes to enhanced accuracy. In situ non-ambient
powder diffraction (see Langford & LoueÈr, 1996), not
covered in this overview of the powder method, has also
greatly bene®ted from the new methodology. It is
probably the real world of powder diffraction applica-
tions, since solid-state transformations due to external
constraints (temperature, pressure, atmosphere etc.)
usually give powders. The application of all modern
powder diffraction techniques, e.g. structure and
microstructure analyses, to data collected at non-
ambient conditions leads to a better knowledge of the
behaviour of materials under conditioned environments.
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Representative examples are applications to industrial
solid-state materials (Barnes et al., 1996), electro-
chemical materials (Chabre & Pannetier, 1995),
minerals (Artioli, 1997) and combinations of experi-
ments such as powder diffraction, small-angle X-ray
scattering and X-ray absorption spectrocopy (Cheetham
& Mellot, 1997). All the methods described in this article
will have a signi®cant roÃ le to play in the future. This will
be enhanced by the use of intense high-resolution
sources, such as dedicated synchrotron rings and
neutron time-of-¯ight sources. For instance, instru-
mental resolutions lower than 0.01�2� have already been
reported at the ESRF with highly crystalline powders.
Applications are also greatly facilitated by the devel-
opment of software designed to handle powder data in a
systematic way, similar to the usual analysis of single-
crystal data. Moreover, the new direct-space methods
and computer-simulation approaches for crystal-struc-
ture predictions should also have a great impact in the
study of certain classes of solids, e.g. drugs and organic
materials.
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